USN

Sixth Semester B.E. Degree Examination, June-July 2009 Satellite Communication

Time: 3 hrs. Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part.

- 2. Standard notations are used.
- 3. Assume any missing data suitably.

3. Assume any missing data suitably.				
		PART – A		
1	a. b. c.	Explain the services provided by satellites. Calculate the radius of a circular orbit for which the period is 1 day. Explain the following terms	(05 Marks) (05 Marks)	
2		i) Argument of perigee ii) Right Ascension of ascending node iii) Inclination iv)Prograde and Retrograde orbits.	(10 Marks)	
2	a.	A satellite has eccentricity of 0.14452 and is given by NASA prediction bulletin 10 ⁻³ and mean anomaly at epoch as 204.9779°. The mean motion is 14.2171404 r day. Calculate the true anomaly and the magnitude of radius vector 5 secs after The semimajor axis is known to be 7194.9km.	evolutions /	
	b. с.	A geostationary satellite is located at 80°W. Calculate the azimuth angle for an eantenna at latitude 35°N and longitude 90°W. Explain the phenomenon Earth eclipse of satellite and sun transit outage.	earth station (05 Marks)	
2		-	(08 Marks)	
3	a. b.	Explain Atmospheric losses and Ionospheric losses for satellites. An antenna has a noise temperature of 40°K and is matched into a receiver which temperature of 100°K. Calculate i) Noise power density; ii) Noise power for a base 46 MHZ.		
	c.	Explain carrier to Noise Ratio of a satellite link.	(07 Marks)	
4	a. b. c.	Explain attitude control of a satellite. Explain how station keeping is done in satellites. With the help of a neat diagram explain wideband receiver of a Transponder.	(07 Marks) (07 Marks) (06 Marks)	
		PART – B		
5	a. b. c.	Explain MATU system. What is the channeling scheme used for the spade system? Explain. Explain preassigned TDMA with an example (CSC).	(07 Marks) (07 Marks) (06 Marks)	
6	a.	Compare the uplink power requirements for FDMA and TDMA.	(07 Marks)	
	b.	A downlink $\begin{bmatrix} C_{N_o} \end{bmatrix}$ is 87.3dBH ₂ for a TDMA circuit that uses QPSK modulati	on. A BER	
		of 10 ⁻⁵ is required. Calculate the maximum transmit rate. Also calculate the IF	bandwidth	
		required assuming a roll off factor of 0.2 and $\frac{E_b}{N_o} = 9.5 dB$ for BER = 10^{-5} .	(06 Marks)	
7	c. a.	Briefly explain satellite switched TDMA. Explain the following	(07 Marks)	
	b.	i) Transponder capacity ii) Bit rate for Digital Television. Explain in detail the satellite mobile services.	(08 Marks) (12 Marks)	
8	a. b.	What is VSAT? Explain. Explain the following:	(08 Marks)	
		i) GPS ii) Radarsat. *****	(12 Marks)	

		Sa
Tin	ne:	3 hrs. Note: An. at
1	a.	Explain clearly the Kepl $a^3 = \mu$. Specify the gu

USN

06EC662

Sixth Semester B.E. Degree Examination, Dec.09/Jan.10 tellite Communication

Max. Marks:100

swer any FIVE full questions, selecting least TWO questions from each part.

PART - A

- er's laws of planetary motion. Express the third law in the form $\frac{\mu}{n^2}$. Specify the quantities a, μ and n with precise units. (09 Marks)
 - b. A satellite in an elliptical orbit has a perigee of 1000km and apogee of 4000km. If the mean earth radius is 6371km, find the period of the orbit in minutes. (06 Marks)
 - Define the following terms as applicable to orbiting satellites:
 - Line of apsides
- ii) Ascending node
- iii) Prograde orbit

- iv) Argument of perigee
- v) Mean anamoly.

(05 Marks)

- What is orbit perturbation? Explain with relevant differential equations, the regression of nodes and the rotation of apsides.
 - b. Explain with the help of a neat diagram, the polar mount antenna.

(06 Marks)

c. An earth station is located at a latitude of 12°S and longitude 52°W. Calculate the antenna look angles for a satellite at 70° W. Assume radius of earth – 6371km and $a_{GSO} = 42,164$ km.

What is meant by EIRP? Show that the received power in a satellite link can be expressed as 3 $[P_R] = [EIPR] + [G_R] - [FSL],$

 $[P_R]$ = Received power in dBW

[EIRP] = Equivalent isotropic radialed power in dBW

 $[G_R]$ = Gain of the receiving antenna in dB

[FSL] = Free space loss in dB.

(08 Marks)

- b. Explain what is meant by:
 - Antenna noise temperature
- ii) Amplifier noise température

iii) System noise temperature referred to input.

(06 Marks)

- c. A LNA is connected to a receiver which has a noise figure of 12dB. The gain of the LNA is 40dB, and its noise temperature is 120°K, calculate the overall noise temperature referred to the LNA input. (06 Marks)
- What is attitude control as applicable to satellites? Explain with the help of a diagram, spin stabilization of satellites. (08 Marks)
 - b. What is a satellite transponder? With a neat diagram, explain the overall frequency arrangement of a typical c-band communication satellite. (08 Marks)
 - Explain briefly the need for TTC in satellite systems.

(04 Marks)

PART - B

- With a neat diagram, explain the outdoor and indoor units of a receive-only home T.V. 5 system. (10 Marks)
 - What is meant by preassigned FDMA? With a neat diagram, explain single channel per carrier (SCPC) in INTELSAT for a 36 MHz transponder.

- 6 a. What is meant by TDMA? Explain the need for reference burst. Explain briefly the different components of a reference burst. (10 Marks)
 - b. With a neat diagram, explain digital TASI.

(10 Marks)

- 7 a. With respect to direct broadcast satellite services, explain:
 - i) Orbital spacing
- ii) Power rating of transponders
- iii) Frequency of operations
- iv) Polarization

(08 Marks)

- b. With a neat diagram, explain the salient features of MPEh 2 compressor used in digital transmission of video in satellites. (12 Marks)
- 8 a. What is mobile satellite service? Explain briefly any two such systems.

(10 Marks)

b. Explain briefly:

i) VSAT and its applications

ii) GPS and its uses.

(10 Marks)

Scinivas Institute of Technology

Sixth Semester B.E. Degree Examination, May/June 2010 **Satellite Communication**

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

a. Explain briefly the various services provided by a satellite. 1 (06 Marks)

State Kepler's three laws of planetary motion, with the help of a neat diagram and give necessary equations. (08 Marks)

c. Define Keplerian elemental set.

(06 Marks)

- a. An earth station is located at latitude 30° S and longitude 65° E. Calculate the antenna look angles for the satellite at 156° E. (08 Marks)
 - b. Briefly explain the launching orbits for a geostationary satellite.

(06 Marks)

- c. A quasi-geo satellite is in a circular equatorial orbit, close to the geosynchronous attitude. Its orbital period is exactly 24 hours, one solar day. Calculate:
 - i) The radius of the orbit
 - The rate of drift around the equator of the subsatellite point in degree/solar day. An observer on the earth sees that the satellite is drifting across the sky.
 - Is the satellite moving towards the east or towards the west? iii)

(06 Marks)

- For satellite transmission $El = 22^{\circ}$, $R_{0.01} = 15$ mm/h, $h_0 = 600$ m, $h_R = 1500$ m. Calculate rain attenuation for vertical polarization at an operating frequency of 14 GHz. ($a_v = 0.0335$, $b_v = 1.128$). (07 Marks)
 - b. Explain the different transmission losses in a satellite link.

(07 Marks)

- Define saturation flux density. Obtain the equation for saturation EIRP for uplink. (06 Marks)
- a. What is meant by satellite altitude? Briefly describe three axis method of satellite stabilization. (07 Marks)
 - b. With the help of a neat diagram, explain TTC and M subsystem.

(07 Marks)

c. What is meant by frequency reuse? Briefly describe the working of a wide band receiver. (06 Marks)

PART - B

- With a neat block diagram, explain the outdoor and indoor unit for analog FM/TV.(12 Marks) 5 Explain the spade system, with a neat diagram. (08 Marks)
- With a neat diagram, explain frame and burst formats for a TDMA system. (07 Marks)
 - b. Explain the working of carrier recovery circuit with single tuned circuit having AFC. (07 Marks)
 - Determine: i) Miss probability for the values N = 4, E = 5, $P = 10^{-3}$.

ii) False detection for the values N = 40, E = 5.

(06 Marks)

- a. Calculate the bit rate that can be carried in the 36 MHz channel using QPSK, allowing a roll-7 off factor of 0.2. (05 Marks)
 - b. Explain the very small aperture terminal system.

(08 Marks)

c. Give the applications of Radar Sat. Explain a 'dawn to dusk' orbit.

(07 Marks)

a. Explain the global positioning system, in detail. 8

(08 Marks)

Write short notes on: i) System noise temperature ii) Preassigned FDMA. (12 Marks)